Xie Yuhan

Portfolio: github.com/XYHZJU

Education

•	Zhejiang University Bachelor of Automation; GPA: 3.88/4.0	Hangzhou, China September 2019 - June 2023
	Main Courses: Calculus, Linear Algebra, Complex Variable Functions, Imbedded System, Program Control, Artificial intelligence, Computer Vision	Design, Principle of Automatic
•	KTH Royal Institute of Technology Master of System, Control and Robotics; GPA: 4.63/5.0 Main Courses: Introduction to Robotics, Modelling of Dynamic Systems, Computer Vision and Im Artificial Intelligence and Multi Agent Systems	Stockholm, Sweden September 2022 - June 2024 Page Analysis, Machine Learning,
•	EPFL Exchange Student; GPA: 5.75/6.0 Main Courses: Intelligent Agents, Mathematics of data: from theory to computation, Semester Pro-	Lausanne, Switzerland September 2023 - present

Skills Summary

Programming Languages:	Python, C, C++, C#, Matlab, Lua
• Frameworks:	Pytorch, ROS, OpenCV
• Domains of Interests:	Deep Learning in Time Series, Transfer Learning, Graph Learning, Multi-agent Decision

Academic Experience

ZJUNlict RoboCup Laboratory, Zhejiang University

- Lab student member
 - State Machine on 8vs8 Football Game: Use Lua to maintain the state machine of the game and decide the offensive or defensive strategy based on visual parameters.
 - **Intelligent Decision Making**: Developed value based evaluation function to calculate the best receiving position for players, and the best passing targets.

State Key Laboratory of Industrial Control Technology, Zhejiang University

Lab student member

June 2022 - December 2023

September 2021 - July 2022

- **Multi-step Prediction of Industrial Process by Deep Learning**: Developed a Decomposition-based Encoder-Decoder Framework for Multi-step Prediction of Burn-Through Point in Sintering Process. A conference paper is published based on the work, and one Journal paper is being prepared based on the extension of the work.
- Forecasting on Time Series with Timeporal Distribution Shifts: Proposed decorrelated domain adversarial training (DDAT) on datasets are shown to suffer from distribution shifts over time, with outperforming results. The work is submitted to one journal.
- Signal Processing Laboratory (LTS4), EPFL

Project Student

- Graph Representation Learning for Epilepsy Classification: Leveraged current advancements in graph learning for time series forecasting to extract task-specific networks in the self-supervised pretraining strategy, and studied the performances of graph learning networks at different scale, by comparing static and dynamic networks, as well as personalized ones, to achieve better performance.
- **Task Alignment of Self-Supervised Learning in Time Series**: Designed auxiliary tasks and self-supervised learning structures to achieve better performances of downstream tasks. Adopted the idea of contrastive learning and auxiliary variable embedding to formulate a better optimization process and latent distribution in the self-supervised learning task, which in the end provides more transferable embeddings.

Publication

- A Decomposition-based Encoder-Decoder Framework for Multi-step Prediction of Burn-Through Point in Sintering Process: First author, 2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS) (Accepted)
- Learning Self-Supervised Dynamic Networks For Seizure Analysis: Co-first author, ICLR 2024 workshop (Accepted)
- EnvFormer: A Decomposition-based Encoder-decoder models for Burn-through Points Multistep Prediction: First author, IEEE Transactions on Industrial Electronics (Under Review)
- Decorrelated Domain Adversarial Training for Time Series Forecasting with Temporal Distribution Shifts: Co-first auther (In Submission)

Setptember 2023 - present

Projects

- Path and Trajectory Planning: Project of the Course Smart Moblie Technology. In the given simulation environment of a 90 square meters football field, I combined RRT* route plan method with PID control method to enable vehicle moving up to 3m/s to the target and avoid dynamic obstacles.(November '21)
- Bouncing Ball System by Arduino: Use camera, Arduino and servos to build a close-loop system to bounce the ball on a plate.Use Camshift and Hough Circle Transformation to recognize the ball and fuzzy PID method to control the four servos. (December '21)
- Traffic Flow Prediction by LSTM: Use LSTM to predict the transit time of buses in a district. I obtained 22 bus routes and their timestamps, and made time-series predictions of bus speeds through deep learning methods. (May '22)
- Pedestrian Tracking by Kalman filter and Particle Filter: We implemented Kalman filter and Particle filter to track a given pedestrian from a video clip of MOTChallenge data set. We improved the particle filter to solve the problem of losing target when two pedestrians overlap. (December '22)
- Multi-intelligence Collaborative Search: In the simulate environment built by Unity, we developed an algorithm to generate optimum paths for three cars to search a random maze. (March '23)
- **Decentralized Coordination**: Implemented an auctioning agent for the pickup and delivery problem to achieve optimal individual pay off. (November '23)

Honors and Awards

- KTH One-Year Scholarship (top 11 out of 1000+) April, 2023
- Outstanding Graduate Students of ZJU (top 30 out of 150) June, 2023
- Second-class Scholarship of ZJU (top 30 out of 150) October, 2021
- Third Prize of The Chinese Mathematics Competitions December, 2021

Other Experience

- Chair Man of the College Student Union, June 2021 June 2022
- Coach of the School Debate Organization, September 2020 June 2021
- Member of Zhejiang University Student Committee, June 2021 June 2022